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Abstract

In this paper, we consider a homogeneous Markov process ξ(t;ω) on an
ultrametric space Qp, with distribution density f (x, t), x ∈ Qp, t ∈ R+,
satisfying the equation ∂

∂t
f (x, t) = −Dα

x f (x, t), usually called the ultrametric
diffusion equation. We construct and examine a random variable τZp

(ω) that
has the meaning the first passage times. Also, we obtain a formula for the mean
number of returns on the interval (0, t] and give its asymptotic estimates for
large t.

PACS numbers: 02.50.Ga, 05.10.Gg
Mathematics Subject Classification: 60

1. Introduction

Ultrametric random processes and their physical and biological applications have recently
been attracting much attention, especially in connection with modelling the dynamics and
evolution of complex systems characterized by multidimensional rugged energy landscapes
(fitness landscapes) with a huge number of local minima (see, for instance, [1–10]). It is clear
that a description of the dynamics on such landscapes requires adequate approximations. As
shown recently, a reasonable approximation for the dynamics of some biological systems (in
particular, proteins) can be chosen in the form of random ‘jumps’ between local minima of
a landscape, under the assumption that the only key factor is the maximal activation barrier
on the landscape that separates these local minima [11]. In this case, the local minima are
clustered in ‘basins’ of minima hierarchically embedded in one another. Accordingly, the
dynamics of such a system is described in terms of random ‘jumps’ between the basins. As
shown in recent publications [7–9], such approximations can be naturally described in terms
of ultrametric random processes, and it turns out that the p-adic pseudodifferential equation
of ultrametric diffusion (introduced in [12] and called there the equation of Brownian motion
on the p-adic line) gives an adequate description of protein dynamics [8, 13].
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Clearly, a physically meaningful application of the ultrametric diffusion equation requires
an answer to some questions pertaining to the description of experimentally observable
quantities. In this connection, it should be mentioned that the observable quantity in a
real experiment corresponds to some specific degrees of freedom (determined by the adopted
method of measurement) of a complex system with many degrees of freedom. In some cases,
the observable quantity corresponds to a characteristic of the system averaged over all its states
(see, for instance, [8]); in other situations, it is determined by some specific states [13]. In a
situation of this kind, there arise classical probability problems for ultrametric diffusion such
as the problem of the first passage time distribution and the problem of the number of returns.

In this paper, we consider a homogeneous Markov process ξ(t;ω) on an ultrametric
space Qp (ultrametric random walk), with the distribution density f (x, t), x ∈ Qp, t ∈ R+,
satisfying the equation

∂

∂t
f (x, t) = −Dα

x f (x, t),

usually called the ultrametric diffusion equation (for definitions and notation see below). We
consider a specific random process ξ(t;ω), namely, that whose distribution density satisfies
the Cauchy problem for the ultrametric diffusion equation with the initial density in a domain
Zp ⊂ Qp.

Our aim is to construct and examine a random variable τZp
(ω) that has the meaning the

first time instant when the trajectories of the random process ξ(t;ω) return to the domain
Zp. To study this problem, we first prove that the distribution density of τZp

(ω), denoted
by f (t), satisfies a nonhomogeneous Volterra equation, then we construct a solution of that
equation and examine its properties. On the other hand, we show that the first passage time
distribution density can be represented as a functional of a density function which is a solution
of the ultrametric diffusion equation with the absorbing region Zp. It is shown that these two
approaches are equivalent. In the last part of the paper, we consider the problem of the number
of returns to the domain Zp on the time interval (0, t]. We obtain a recurrent equation for the
probability q(m)(t) of the mth return on the time interval (0, t], as well as a recurrent equation
for the probability h(m)(t) of precisely m returns on the interval (0, t]. We study the properties
of the functions q(m)(t), h(m)(t) and obtain a formula for the mean number of returns on the
interval (0, t] and give its asymptotic estimates for large t.

Section 2 contains some basic facts from p-adic analysis and the theory of random
processes. These facts are used for the introduction of necessary notation and definitions. In
section 3, we consider the first passage problem for ultrametric random walk. In section 4, we
introduce and examine a p-adic analogue of the diffusion equation with an absorbing region
for the first passage problem. Section 5 is dedicated to the problem of the number of returns
for ultrametric diffusion.

2. Elements of p-adic analysis and the theory of random processes

Let Q be the field of rational numbers and p ∈ Q a fixed prime. Any rational number x �= 0
can be uniquely represented in the form

x = pγ a

b
,

where a, b, γ ∈ Z are integers; a and b are coprime positive integers indivisible by p. The
p-adic norm |x|p of x ∈ Q is defined by the relations |x|p = p−γ , |0|p = 0. The completion
of the field of rational numbers Q with respect to the p-adic norm is denoted by Qp and is
called the field of p-adic numbers. The set Qp endowed with the metric ρ(x, y) = |x − y|p is
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an ultrametric space which is complete, separable, totally disconnected and locally compact.
There is a unique (to within a coefficient) Haar measure dpx on Qp which is translation
invariant: dp(x + a) = dpx. We normalize this measure by the condition∫

Zp

dpx = 1,

where Zp = {x ∈ Qp : |x|p � 1} is the ring p-adic integers. There is only one measure dpx

satisfying the above condition.
We introduce a class Wα(α � 0) of complex-valued functions ϕ(x) on Qp satisfying the

following conditions:

(i) |ϕ(x)| � C
(
1 + |x|αp

)
, where C is a constant;

(ii) there is an integer N = N(ϕ) > 0 such that ϕ(x + x ′) = ϕ(x) for any x ∈ Qp and any
x ′ ∈ Qp such that |x ′|p � p−N .

A function ϕ(x) satisfying these two conditions is called locally constant, and N(ϕ) is
called its index of locally constancy. For a function ϕ that additionally depends on a real
parameter t , we say that ϕ ∈ Wα uniformly in t, if the constant C and the index N do not
depend on t.

Functions in W 0 with compact support are called test functions (or Bruhat–Schwartz
functions). The set of all test functions is denoted by D, and the set of distributions on D is
denoted by D′.

Let χ be a normalized additive character of the field Qp. Then χ ∈ W 0. The Fourier
transform of a function ϕ(x) ∈ L1(Qp, dpx) is defined by

ϕ̃(k) =
∫

Qp

χ(kx)ϕ(x) dpx, k ∈ Qp. (2.1)

For ϕ̃(k) ∈ L1(Qp, dpk), the inverse Fourier transform is defined by

ϕ(x) =
∫

Qp

χ(−kx)ϕ̃(k) dpk, x ∈ Qp. (2.2)

The operator Dα
x (the Vladimirov pseudodifferential operator [12]), α > 0, is defined on

functions ϕ ∈ Wβ, 0 � β < α, by the formula

Dα
x ϕ(x) = − 1

�(−α)

∫
Qp

dpy
ϕ(y) − ϕ(x)

|x − y|α+1
p

, (2.3)

where �p(−α) = 1−p−α−1

1−pα is the p-adic analogue of the gamma function.
Below, we consider random processes over the field Qp. According to the Kolmogorov

axioms, a measurable space is a pair {
,�}, where 
 is a set and � is a σ -algebra of subsets
of 
. A probability space is a triplet {
,�, P}, where {
,�} is a measurable space and P
is a countably additive nonnegative measure on � such that P(
) = 1. An element A ∈ �

is called an event, and the measure P(A) is called the probability of the event A. Let {Y, B}
be a measurable space. A mapping ξ : 
 → Y is called �|B-measurable, if ξ−1(B) ⊂ �.
A �|B-measurable mapping ξ is called a random variable with values in Y and is denoted by
ξ = ξ(ω). Such a function ξ(ω) induces a probability measure Pξ (B) = P{ξ−1(B)} on sets
B ∈ B. The function Pξ (B) is called the distribution function of the random variable ξ .

A random mapping of a set T into a measurable space {Y, B} is defined as a mapping
ξ(t, ω) : T × 
 → Y such that for any fixed t ∈ T it is a measurable mapping from (
,�)

to {Y, B}, i.e., for any B ∈ B, we have

{ω ∈ 
 : ξ(t, ω) ∈ B} ∈ �.

If the parameter t is interpreted as time, a random mapping is called a random process.
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Let Y ≡ Qp, T ≡ R1
+. As a probability space one can take 
 ≡ Qp and � ≡ B,

where B is the σ -algebra of all measurable subsets of Qp. To define a Markov process on Qp

homogeneous with respect to time, it suffices to define its distribution density function f (x, t)

and the transition density f (y, t |x) satisfying the following conditions:

(1) f (x, t) is B-measurable in x ∈ Qp for any t,
(2)

∫
Qp

f (x, t) dpx = 1,
(3) f (y, t |x) � 0 for any x ∈ Qp, y ∈ Qp, and t > 0,
(4) f (y, t |x) is B × B-measurable in x, y for any t > 0,
(5)

∫
Qp

f (y, t |x) dpy � 1 for any x ∈ Qp and t � 0,
(6) for any x ∈ Qp, y ∈ Qp, s � 0, and t � 0, the Chapman–Kolmogorov condition holds:

f (z, t + s|x) =
∫

Qp

f (z, t |y)f (y, s|x) dpy, (2.4)

(7) for any x ∈ Qp, s � 0, and t � 0, the compatibility condition holds:

f (z, t + s|x) =
∫

Qp

f (z, t |y)f (y, s) dpy. (2.5)

In this case, f (x, t) defines a one-point distribution function for the random process:

P(B, t) =
∫

B

f (x, t) dpx,

and f (y, t |x) defines the transition function for the homogeneous Markov process:

P(B, t |x) =
{∫

B
f (y, t |x) dpx, t > 0, x ∈ Qp, B ∈ B,

IB(x), t = 0,

where IB(x) is the characteristic function of the set B.

3. The first passage problem

Consider a homogeneous Markov process ξ(t, ω) : R1
+ × 
 → Qp with the transition density

f (y, t |x) ≡ f (y − x, t) =
∫

Qp

exp
(−|k|αpt

)
χ(k(y − x)) dpk. (3.1)

The function f (y − x, t) satisfies the Markovian conditions

f (x, t) > 0,

∫
Qp

f (x, t) dpx = 1,

f (x, t) → δ(x) in D′ as t → 0+,∫
Qp

f (x − y, t)f (y, t ′) dpy = f (x, t + t ′).

The function f (y−x, t) of the form (3.1) is a fundamental solution of the ultrametric diffusion
equation

∂

∂t
f (x, t) = −Dα

x f (x, t). (3.2)

This random process was introduced in [12] as a p-adic analogue of random walks (on
the p-adic line), and equation (3.2) was interpreted as a p-adic analogue of the diffusion
equation, although the operator Dα

x is nonlocal and its correspondence to the Laplace operator
is problematic. Note that in contrast to Wiener processes, the p-adic random walk ξ(t, ω)
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admits no continuous trajectories, since Qp is a totally disconnected topological space. The
support of ξ(t, ω) belongs to the class of functions without discontinuities of the second kind
(see, for instance, [12]). The operator Dα

x can be interpreted in more clear physical terms,
if (3.2) is regarded as a kinetic equation [7–9], which is justified in view of the integral
representation (2.3) of the pseudodifferential operator Dα

x .
One of the classical problems of random walks on the real line is that of finding the

distribution function of the random variable describing the first time instant when the wandering
particle returns to the origin. Consider a similar problem for the p-adic random walk ξ(t, ω)

defined above.
Let the evolution of the distribution density function ϕ(x, t) of the random process ξ(t, ω)

be described by the Cauchy problem for the ultrametric diffusion equation

∂

∂t
ϕ(x, t) = − 1

�p(−α)

∫
Qp

dpy
ϕ(y, t) − ϕ(x, t)

|y − x|α+1
p

, (3.3)

with the initial condition

ϕ(x, 0) = 
(|x|p), (3.4)

where 
(|x|p) = {1, |x|p�1,

0, |x|p>1
is the characteristic function of the domain Zp.

Definition. The random variable τZp
(ω) : 
 → R1

+ defined by the relation

τZp
(ω) = inf{t > 0 : |ξ(t, ω)|p � 1, if ∃t ′ : |ξ(t ′, ω)| > 1, 0 < t ′ < t}

is called the first passage time of a trajectory of the random process ξ(t, ω) entering the
domain Zp (i.e., the first instant when it returns to Zp).

The initial condition (3.4) obviously implies that

P{ω ∈ 
 : |ξ(0, ω)| � 1} = 1.

Theorem 1. The distribution density function f (t) of the random variable τZp
(ω) satisfies the

nonhomogeneous Volterra equation

g(t) =
∫ t

0
g(t − τ)f (τ) dτ + f (t)

with

g(t) = − 1

�p(−α)

∫
Qp\Zp

ϕ(x, t)

|x|α+1
p

dx.

Proof. Consider the event A(ti, tj ) that consists in that a particle staying in the domain Qp\Zp

goes back to the domain Zp at a time belonging to the interval (ti , tj ] (under the condition that
at t = 0 the particle stays in Zp):

A(ti, tj ) = {
ω ∈ 
 : ∃t ∈ (ti , tj ], lim

t ′→t−0
ξ(t ′, ω) /∈ Zp, lim

t ′→t+0
ξ(t ′, ω) ∈ Zp|ξ(0, ω) ∈ Zp

}
.

Consider also the event B(ti, tj ) that consists in that a particle staying in the domain Qp\Zp

goes back to the domain Zp for the first time at an instant belonging to the interval (ti , tj ]:

B(ti,tj ) = {ω ∈ 
 : ti < τZp
(ω) � tj }.

Let us divide the interval (0, t] into n parts:

0 ≡ t0 < t1 < t2 < · · · < tn−1 < tn ≡ t.

5



J. Phys. A: Math. Theor. 42 (2009) 085003 V A Avetisov et al

We obviously have A(tn−1, tn) ⊂ ⋃n
i=1 B(ti−1, ti). Since A(tn−1, tn)

⋂
B(tn−1, tn) =

B(tn−1, tn), it follows that

A(tn−1, tn) = A(tn−1, tn)
⋂(

n⋃
i=1

B (ti−1, ti)

)

=
n⋃

i=1

(
A(tn−1, tn)

⋂
B(ti−1, ti)

)

=
{

n−1⋃
i=1

(
A(tn−1, tn)

⋂
B(ti−1, ti)

)}⋃
B(tn−1, tn). (3.5)

Let P{A(ti−1, ti)} and P{B(ti−1, ti)} be the probabilities of the events A(ti−1, ti) and B(ti−1, ti),
respectively. Taking into account (3.5) and the incompatibility of the events B(ti−1, ti), we
can write

P{A(tn−1, tn)} =
n−1∑
i=1

P
{
A(tn−1, tn)

⋂
B(ti−1, ti)

}
+ P{B(tn−1, tn)}

=
n−1∑
i=1

P{A(tn−1, tn)|B(ti−1, ti)}P{B(ti−1, ti)} + P{B(tn−1, tn)}

=
n−1∑
i=1

{P{A(tn−1 − ti , tn − ti)} + ε(ti − ti−1)}P{B(ti−1, ti)} + P{B(tn−1, tn)}.

(3.6)

Here, we have used the relation

P{A(tn−1, tn)|B(ti−1, ti)} = P{A(tn−1 − ti , tn − ti)} + ε(ti − ti−1),

where ε(ti − ti−1) → 0 as ti − ti−1 → 0. On the other hand, the probability P{A(tn−1, tn)}
is determined by the solution ϕ(x, t) of the Cauchy problem for the ultrametric diffusion
equation (3.3) with the initial condition (3.4) and has the form

P{A(tn−1, tn)} = g(tn)(tn − tn−1) + o(tn − tn−1), (3.7)

where g(t) is defined by

g(t) = − 1

�p(−α)

∫
Qp\Zp

ϕ(x, t)

|x|α+1
p

dx. (3.8)

The function g(t) is interpreted as the density of the probability to go back to the domain
Zp at time t. Similarly, the probability P {B(ti−1, ti)} of the first passage to the domain Zp on
the time interval (ti−1, ti] for the same random process can be represented in the form

P{B(ti−1, ti)} = f (ti)(ti − ti−1) + o(ti − ti−1), (3.9)

where f (ti) is the sought density of the probability of the first passage to the domain
Zp at time ti . Now, substituting (3.7) and (3.9) into (3.6) and passing to the limit as
maxi=1,...,n{(ti − ti−1)} → 0, we obtain a nonhomogeneous Volterra equation of convolution
type,

g(t) =
∫ t

0
g(t − τ)f (τ) dτ + f (t). (3.10)

�

Note that g(t) is a continuous function, and therefore, equation (3.10) has a unique
solution in the class of continuous functions (see, for instance, [14]). It is easy to check that

6
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g(t) is a function with a finite growth exponent for t � 0, and therefore, f (t) has a finite
growth exponent for t � 0 and there exist Laplace transforms of the functions g(t), f (t)

denoted by G(s), F (s), respectively. Passing to the Laplace transforms in (3.10), it is easy to
find that

F(s) = G(s)

1 + G(s)
. (3.11)

Let us calculate G(s). Substituting the solution of the Cauchy problem (3.3)–(3.4), which has
the form (see (3.1), (3.2))

ϕ(x, t) =
∫

Qp


(|k|) exp
[−|k|αpt

]
χ(−kx) dpk,

into (3.8), integrating the result in x and then passing to the Laplace transforms in t, we get

G(s) =
∫

Qp


(|k|p)
Bα − |k|αp
s + |k|αp

dpk = (Bα + s)J (s) − 1, (3.12)

where

Bα = (1 − p−1)

1 − p−α−1
, p−α < Bα < 1,

J (s) = (1 − p−1)

∞∑
n=0

p−n 1

s + p−αn
.

(3.13)

Substituting (3.12) into (3.11), we obtain the Laplace transform of the desired function:

F(s) = 1 − 1

(Bα + s)J (s)
. (3.14)

The function F(s) is analytic in the domain Re s > 0 and tends to zero as |s| → ∞, uniformly
with respect to arg s. The function F(s) is the Laplace transform of the function f (t) with
zero growth exponent: |f (t)| < M . Now, it is not difficult to show that f (t) has the following
properties:

(1) For α � 1, we have
∫∞

0 f (t) dt = F(0) = 1, which means that for α � 1 the particle is
sure to return to the initial region, and therefore, on an infinite time interval will go back
to that region infinitely many times. In this case, however, there is no finite mean waiting
time for the first passage:

〈τZp
〉 =

∫ ∞

0
tf (t) dt = − lim

s→0
Re s>0

d

ds
F (s) → +∞.

(2) For 0 < α < 1, we have
∫∞

0 f (t) dt = F(0) = p

pα

(
pα−1
p−1

)2 ≡ Cα < 1. This means
that for small α, there exist trajectories of the ultrametric random walk that abandon the
initial region never to go back. Note that for the real-valued Brownian motion the return
property of its trajectories is missing only if the dimension of the space is greater than
two.

Consider more closely the function F(s). Clearly, it has simple poles at s = −λk, k =
0, 1, 2, . . . , which are simple roots of the equation J (s) = 0, and s = −Bα ≡ −λ−1.
From (3.13), it is easy to see that the values λk belong to the interval p−α(k+1) < λk < p−αk .
The point s = 0 is essentially singular and is a limit point of the poles. The function F(s)

is non-meromorphic on the complex plane, and this is an obstacle to the application of
the residue theory for the calculation of the inverse Laplace transforms. To overcome this
obstacle, we first prove the following result.

7
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Lemma 1. The function F(s) can be represented as an infinite sum of terms with simple poles
at the points s = −λk, k = −1, 0, 1, 2, . . . , namely,

F(s) =
∞∑

k=−1

bk

s + λk

, (3.15)

where bk are the residues of F(s) at the points −λk . On any closed set G that does not contain
s = 0, the series (3.15) becomes uniformly convergent, if its finitely many terms with poles in
G are dropped.

Proof. Consider the auxiliary function

�(w) = F

(
1

w

)
, lim

w→0
�(0) = lim

s→∞ F(s) = 0, lim
w→∞ �(w) = F(0).

The function �(w) is analytic on the complex plane except at the simple poles w−1 =
− 1

Bα
, wk = − 1

λk
, k = 0, 1, 2 . . . . By the Mittag–Leffler theorem [15], �(w) can be represented

in the form

�(w) =
∞∑

k=−1

(
ck

w − wk

− pk

)
+ c,

where c is a constant and ck are the residues of �(w), and this series becomes uniformly
convergent on any closed bounded set, if its terms with poles in that set are dropped. Then

F(s) =
∞∑

k=−1

(
ck

1
s

+ 1
λk

− pk

)
+ c =

∞∑
k=−1

(
ckλks

s + λk

− pk

)
+ c

=
∞∑

k=−1

(
ckλ

2
k

s + λk

+ ckλk − pk

)
+ c,

and since �(0) = 0, we have

F(s) =
∞∑

k=−1

ckλ
2
k

s + λk

.

Letting ckλ
2
k = bk , we obtain (3.15). �

From lemma 1 and the uniform convergence of (3.15) in the domain Re s � s0 > 0, we see
that for the calculation of the original function f (t) it suffices to apply the inverse Laplace
transformation to the series (3.15) term by term. Thus, we get

f (t) = L−1
s→t [F(s)](t) =

∞∑
k=−1

bkL
−1
s→t

[
1

s − λk

]
(t),

and finally,

f (t) =
∞∑

k=−1

bk exp[−λkt], (3.16)

where

b−1 = 1

J (−Bα)
, (3.17)

bk = 1

(Bα − λk)

(1 − p−1)−1∑∞
n=0

p−n

(λk−p−αn)2

, k = 0, 1, 2, . . . . (3.18)

8
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It is not difficult to see that the series
∑∞

k=0 bk is convergent and majorizes the series
(3.16), which implies uniform convergence of the latter and the continuity of f (t).

The above results can be summed up as follows:

Theorem 2. The distribution density for the first passage times of a trajectory of the ultrametric
random walk can be represented as a uniformly convergent series (3.16) whose coefficients
are defined by (3.17) and (3.18).

Let us go on with the examination of f (t). It is not difficult to show that

(1) limt→0 f (t) = lims→∞ sF (s) = 0,
(2) limt→∞ f (t) = lims→0Re s>0 sF (s) = 0.

Then, since the function f (t) is positive and continuous, it must have a maximum. Let
us show that this maximum is unique.

From the first limit, we have
∑∞

k=−1 bk = 0. Thus, the series (3.16) can be
represented as the difference of two monotonically decreasing strictly concave down functions,
f (t) = −f1(t) + f2(t) � 0, and therefore, supt∈R+

|f1(t) − f2(t)| is unique.
The asymptotic behaviour of the function f (t) for all α is described by the following

theorem.

Theorem 3. For the first passage time distribution density f (t) the following estimates hold:

A(α)t
1−2α

α (1 + o(1)) � f (t) � B(α)t
1−2α

α (1 + o(1)) for α > 1, (3.19)

A(α)t−
1
α (1 + o(1)) � f (t) � B(α)t−

1
α (1 + o(1)) for α < 1, (3.20)

A(α)
t−1

(ln t)2
(1 + o(1)) � f (t) � B(α)

t−1

(ln t)2
(1 + o(1)) for α = 1, (3.21)

where o(1) → 0 as t → ∞, and A(α), B(α) are functions of α and p.

This theorem is proved in appendix B.

4. The p-adic analogue of the diffusion equation with an absorbing region for the first

passage problem

For the classical problem of the random walk of a particle on a straight line, it is well known
that the distribution density function for the first instant at which the particle reaches a given
domain can be found from the solution of the diffusion equation with an absorbing region [16].
We are going to show that a similar approach can be used in the p-adic case: the distribution
density function f (t) for the time of the first return to the domain Zp can be obtained from
the solution of the Cauchy problem for the ultrametric diffusion equation with the absorbing
region Zp, i.e., the equation

∂ψ(x, t)

∂t
= − 1

�p(−α)

(∫
Qp

ψ(y, t) − ψ(x, t)

|x − y|α+1
p

dpy − 
(|x|p)

∫
Qp\Zp

ψ(y, t)

|x − y|α+1
dpy

)
,

(4.1)

with the initial condition ψ(x, 0) = 
(|x|p). The second term in the right-hand side of
equation (4.1) is equal to the probability of transition from the region Qp\Zp to the absorbing
region Zp per unit time. Since this transition for all trajectories of the random walk (4.1) is

9
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always the first one, it follows that the probability density of this passage at the instant t is
defined by the formula

f (t) = − 1

�p(−α)

∫
Qp\Zp

ψ(x, t)

|x|α+1
p

dx. (4.2)

Thus, we have two approaches to finding a solution of the first passage problem. Their
equivalence is established by the following theorem.

Theorem 4. The first passage time distribution density function obtained from the solution
of the Cauchy problem for the ultrametric diffusion equation with the absorbing region Zp

coincides with the solution of the Volterra equation (3.10).

Proof. Let us apply the Fourier transformation to ψ(x, t) with respect to the p-adic variable
x and then the Laplace transformation with respect to the real variable t . Denote the resulting
Fourier–Laplace transform by �̃(k, s). From (4.1), taking into account the initial condition
ψ(x, 0) = 
(|x|p), we obtain the following nonhomogeneous Fredholm equation for �̃(k, s):

s�̃(k, s) = 
(|k|p) − |k|αp�̃(k, s) − 
(|k|p)

∫
Qp

�̃(q, s)
(
Bα − |q|αp

)

(|q|p)dpq,

or

�̃(k, s) = 
(|k|p)

s + |k|αp
− 
(|k|p)

s + |k|αp

∫
Qp

�̃(q, s)
(
Bα − |q|αp

)

(|q|p)dpq. (4.3)

Multiplying equation (4.3) by
(
Bα − |k|αp

)

(|k|p) and integrating the result, we get∫

Qp

�̃(k, s)
(
Bα − |k|αp

)

(|k|p)dpk =

∫
Qp


(|k|p)
Bα − |k|αp
s + |k|αp

dpk

+
∫

Qp


(|k|p)
Bα − |k|αp
s + |k|αp

dpk

∫
Qp

�̃(q, s)
(
Bα − |q|αp

)

(|q|p) dpq. (4.4)

Note that
∫
Qp

�̃(q, s)
(
Bα − |q|αp

)

(|q|p) dpq ≡ F(s) is the Laplace transform of the first

passage time distribution density function f (t) defined by (4.2). Now, in view of (3.12), we
can rewrite equation (4.4) in the form

F(s) = G(s) + G(s)F (s).

Comparing this with (3.11), we see that the solution of the last equation coincides with that of
the Volterra equation (3.10). �

5. Number of returns for ultrametric diffusion

In this section, we consider some questions pertaining to the probability of the mth return on
the time interval (0, t] and the growth of the number of returns with the growth of t .

For the probability space {
,�, P}, consider a random process

NZp
(t, ω) : 
 × R1

+ → N ⊂ Z+, NZp
(0, ω) = 0

that describes the number of returns of a particle to the domain Zp on a finite time interval
(0, t]. Let us calculate the probability of the mth return of a particle to Zp on the interval (0, t].
Consider the event Qm

t = {ω ∈ 
 : NZp
(t, ω) � m} that consists in that a particle staying in

the domain Qp\Zp goes back to Zp for the mth time at an instant from the interval (0, t], or
equivalently, that a particle visits the domain Zp at least m times on the time interval (0, t].

10
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Denote the probability of this event by P
{
Qm

t

} = q(m)(t). Obviously, Qm
0 = ∅ for all m > 0

and Q0
t = 
 for all t > 0.

Theorem 5. The probability q(m)(t) of the mth return on the interval (0, t] satisfies the
recurrent equation

q(m)(t) =
∫ t

0
q(m−1)(t − τ)f (τ) dτ, m � 1,

q(0)(t) = 1, m = 0,

(5.1)

where f (t) is the distribution density for the first return time.

Proof. This statement is proved along the same lines as theorem 1, and therefore, we just
outline the main steps.

Consider the event Qm
t . Let Bτ+dτ = {ω ∈ 
 : τ < τZp

(ω) � τ + dτ } be the event of the
first return to the domain Zp on the time interval (τ, τ + dτ ]. Then, Qm

t ⊂ ⋃
τ∈(0,t] Bτ+dτ and

for m �= 0 we can write

Qm
t = Qm

t

⋂⎛
⎝ ⋃

τ∈(o,t]

Bτ+dτ

⎞
⎠ =

⋃
τ∈(0,t]

(
Qm

t

⋂
Bτ+dτ

)
.

Since the events Bτ+dτ are incompatible for all τ ∈ (0, t], we have

P
{
Qm

t

} =
∑

τ∈(0,t]

P
{
Qm

t

⋂
Bτ+dτ

} =
∑

τ∈(0,t]

P{Bτ+dτ }P
{
Qm

t

∣∣Bτ+dτ

}
.

Observing that P
{
Qm

t

∣∣Bτ+dτ

} = P
{
Qm−1

t−τ

}
, we obtain

P
{
Qm

t

} =
∑

τ∈(0,t]

P{Bτ+dτ }P
{
Qm−1

t−τ

}
, m � 1,

P
{
Q0

t

} = 1, m = 0.

(5.2)

Finally, recalling that P
{
Qm

t

} = q(m)(t) and using the symbolic formula P{Bτ+dτ } = f (τ) dτ

(its meaning is clear from the rigorous arguments in the proof of theorem 1), we obtain the
desired recurrent relation (5.1). �

For the Laplace transforms, equation (5.1) reads

Q(m)(s) = Q(m−1)(s)F (s),

Q(0)(s) = s−1,
(5.3)

where Q(m)(s) is the Laplace transform of q(m)(t).
The solution of (5.3) has the form

Qm(s) = 1

s
(F (s))m, (5.4)

where F(s) is defined by (3.14).
Using the recurrent equation (5.1) and the properties of f (t) and F(s), it is not difficult

to show that the functions q(m)(t) have the following properties:

(1) Each q(m)(t) is a monotonically increasing function of t ; the function d
dt

q(m)(t) � 0 has
the meaning of probability density for the mth return.

(2) limt→0
d
dt

q(m)(t) = 0, limt→∞ d
dt

q(m)(t) = 0.
(3) limt→0 q(m)(t) = 0.

11



J. Phys. A: Math. Theor. 42 (2009) 085003 V A Avetisov et al

(4) limt→∞ q(m)(t) = {1, α�1,

(Cα)m, α<1.
Recall that the quantity Cα = p

pα

(
pα−1
p−1

)2
< 1 (see

section 3; property 2 of f (t)) is the measure of return trajectories of the ultrametric
random walk, which is the same as the probability of the first return on the infinite time
interval.

(5) q(m)(t) < q(m−1)(t),m � 1, i.e., the sequence q(m)(t) is monotonically increasing with
respect to m for any t .

With the help of the recurrent equation (5.1) and properties 1, 2 of the function q(m)(t), it
is not difficult to show that the return probability densities have a maximum, which is unique,
and thus, we have a single-mode distribution.

In view of property 4, it is only for α � 1 that one can speak about the mean waiting time
of the mth return. For α � 1, the mth (in particular, the first) return is a certain event, but its
mean waiting time is infinite. Indeed,∫ ∞

0
t

d

dt
q(m)(t) dt = lim

s→0
Re s>0

(
−m (F(s))m−1 d

ds
F (s)

)
= ∞,

since lims→0,Re s>0
d
ds

F (s) = −∞.
Next, consider the problem of finding the probability of precisely m returns on the time

interval (0, t]. Let Hm
t = {ω ∈ 
 : NZp

(t, ω) = m} be the event that on the time interval
(0, t], the particle goes back to the region Zp precisely m times. We are interested in the
probability of this event, P

{
Hm

t

} = h(m)(t).

Theorem 6. The probability h(m)(t) of precisely m returns on the time interval (0, t] satisfies
the following recurrent equations:

h(m)(t) =
∫ t

0
h(m−1)(t − τ)f (τ) dτ, m � 1,

h(0)(t) = 1 −
∫ t

0
f (τ) dτ, m = 0,

(5.5)

where f (t) is the probability density for the first return time.

Proof. We obviously have Hm
t = Qm

t \Qm+1
t , and therefore,

h(m)(t) = q(m)(t) − q(m+1)(t). (5.6)

Substituting (5.1) into (5.6), we obtain the recurrent equations (5.5). The theorem is proved.
�

Let us examine more closely the probability distribution function for precisely m returns.
In terms of Laplace transforms, equation (5.5) has the form

H(m)(s) = H(m−1)(s)F (s),

H (0)(s) = s−1(1 − F(s)),
(5.7)

where H(m)(s) is the Laplace transform of h(m)(t). From (5.7), we obtain the following
expression for the Laplace transform of the solution of equation (5.5):

H(m)(s) = 1

s
(1 − F(s))(F (s))m. (5.8)

Using (3.14) and the solution (5.8), it is not difficult to establish the following properties of
h(m)(t):

12
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(1) h(m)(t) is a positive function such that

lim
t→0
t→∞

h(m)(t) = lim
s→∞
s→0

(1 − F(s))(F (s))m = 0, α � 1,

(2) limt→0 h(m)(t) = 0, α < 1, limt→∞ h(m)(t) = (1 − Cα)(Cα)m, α < 1,
(3) h(m)(t) has a maximum, which is unique,
(4) h(m)(t) < h(m−1)(t).

What is the mean number of returns μ(t) on the time interval (0, t]? Usually, it is expected
that the mean number of returns is proportional to the walk time. By definition, we have

μ(t) =
∞∑

n=1

nh(n)(t). (5.9)

Theorem 7. The mean number of returns on the time interval (0, t] is determined by the
formula

μ(t) =
∫ t

0
g(τ) dτ, (5.10)

where g(t) is defined by (3.8) and is the density of the probability to return to the domain Zp

at the instant t.

Proof. Writing expression (5.9) for Laplace transforms and using (5.8), we obtain

M(s) =
∞∑

n=1

nH(n)(s) = 1

s
(1 − F(s))

∞∑
n=1

n(F (s))n. (5.11)

Since |F(s)| < 1 for Re s > 0, the series in (5.11) can be summed and we have

M(s) = 1

s

F (s)

1 − F(s)
. (5.12)

Hence, using (3.11), we get

M(s) = 1

s
G(s). (5.13)

Applying the inverse Laplace transformation, we obtain (5.10). �

Now, let us calculate the average number of returns on the time interval (0, t], using
(5.10). Integrating equation (3.3) over the domain Zp and taking into account (3.8), we obtain
the following equation:

∂

∂t
SZp

(t) = −BαSZp
(t) + g(t), (5.14)

where SZp
(t) = ∫

Zp
ϕ(x, t) dx. From the solution of the Cauchy problem for equation (3.3)

and the initial condition (3.4), we have the following expression for SZp
(t):

SZp
(t) =

(
1 − 1

p

) ∞∑
n=0

p−n exp[−p−αnt]. (5.15)

The series (5.15) is uniformly convergent, and therefore, using (5.14), (5.15) in (5.10), we
easily obtain

μ(t) = Bα

(
1 − 1

p

) ∞∑
n=0

p(α−1)n(1 − exp[−p−αnt]) +

(
1 − 1

p

) ∞∑
n=0

p−n exp[−p−αnt] − 1.

(5.16)
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Note that the first series in (5.16) is convergent for all α > 0, although there is no uniform
convergence for α � 1. The asymptotic behaviour of the second series is characterized by the
function t−

1
α (see formula (A.2) in appendix A).

Theorem 8. The following asymptotic estimates hold for the function μ(t):

p−1

(
1 − 1

p

)
�

(
1

α

)
Bα

(α − 1) ln p
t

α−1
α + O(t−

1
α )

� μ(t) � p

(
1 − 1

p

)
�

(
1

α

)
Bα

(α − 1) ln p
t

α−1
α + O(t−

1
α ), α > 1, (5.17)

p−1

(
1 − 1

p

)
B1

ln p
�(1) ln t + O(t−1)

� μ(t) � p

(
1 − 1

p

)
B1

ln p
�(1) ln t + O(t−1), α = 1, (5.18)

Cα

1 − Cα

− p−(1−α)

(
1 − 1

p

)
�

(
1 − α

α

)
Bα

α ln p
t−

1−α
α (1 + O(t−1)) � μ(t)

� Cα

1 − Cα

− p1−α

(
1 − 1

p

)
�

(
1 − α

α

)
Bα

α ln p
t−

1−α
α (1 + O(t−1)),

0 < α < 1, (5.19)

where �(x) is the gamma function and Cα = p

pα

(
pα−1
p−1

)2
is the probability of the first return

on the infinite time interval.

To obtain the asymptotic estimates of μ(t) for α � 1, it suffices to integrate the asymptotic
estimates

p−1(1 − p−1)Bα

�(α−1)

α ln p
t−

1
α � g(t) � p(1 − p−1)Bα

�(α−1)

α ln p
t−

1
α

obtained from an asymptotic estimate for the series S(t) (see formula (A.2) in appendix A).
This integration is justified, since the function g(t) and its asymptotic bounds continuously
depend on t � a, α � 1, are strictly positive for large t, and∫ ∞

a

t−
1
α dt = +∞.

To obtain the asymptotic estimates of μ(t) for 0 < α < 1, it suffices to rewrite (5.16) in
the form

μ(t) = Bα

(
1 − 1

p

) ∞∑
n=0

p−(1−α)n(1 − exp[−p−αnt]) +

(
1 − 1

p

) ∞∑
n=0

p−n exp[−p−αnt] − 1

= Bα

(
1 − 1

p

)
1

1 − p−(1−α)
− 1 − Bα

(
1 − 1

p

) ∞∑
n=0

p−(1−α)n exp[−p−αnt]

+

(
1 − 1

p

) ∞∑
n=0

p−n exp[−p−αnt]

and use formula (A.2) from appendix A.
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Appendix A

Here, we obtain an asymptotic estimate for the series

S(t) =
∞∑
i=0

1

ik
a−i e−(b)−i t , t � 0, k ∈ N, a > 1, b > 1, (A.1)

for t 
 1.

Lemma A1. For the series (A.1) the following estimate holds for t 
 1:

(ln b)k−1(ln(bt))−k(bt)−
ln a
ln b �

(
ln a

ln b

)
(1 + o(t)) � S(t)

� a(ln b)k−1(ln(t))−k(t)−
ln a
ln b �

(
ln a

ln b

)
(1 + o(t)), (A.2)

where �(z) is the gamma function.

Proof. Note that 1
xk a

−x is a decreasing function and e−(b)−x t is an increasing function of x.
Therefore, on the interval i � x � i + 1 we have the inequality

1

xk
a−x e−b−(x−1)t � a−i e−b−i t � 1

(x − 1)k
a−(x−1) e−b−x t . (A.3)

Integrating (A.3) in x from i to i + 1, we get

a−1
∫ i+1

i

1

xk
a−(x−1) e−b−(x−1)t dx � a−i e−b−i t � a

∫ i+1

i

1

(x − 1)k
a−x e−b−x t dx. (A.4)

Now, summing the inequalities (A.4) with respect to i from 0 to ∞, we find that

Smin(t) = a−1
∫ ∞

0

1

xk
a−(x−1) e−b−(x−1)t dx � S(t)

� a

∫ ∞

0

1

(x − 1)k
a−x e−b−x t dx = Smax(t),

where

Smin(t) = (ln b)k−1(ln(bt))−k(bt)−
ln a
ln b

∫ bt

0

(
1 − ln y

ln(bt)

)−k

y
ln a
ln b

−1 e−y dy,

Smax(t) = a(ln b)k−1(ln(t))−k(t)−
ln a
ln b

∫ t

0

(
1 − ln y

ln(t)

)−k

y
ln a
ln b

−1 e−y dy.

Let ∫ x

0

(
1 − ln y

ln x

)k

yz−1 e−y dy = γ (k)(z, x),
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and note that lim
x→∞ γ (k)(z, x) = ∫∞

0 t z−1 e−y dy = �(z) and γ (0)(z, x) = ∫ x

0 t z−1 e−y dy =
γ (z, x). Then, for x 
 1, we can write

Smin(t) = (ln b)k−1(ln(bt))−k(bt)−
ln a
ln b �

(
ln a

ln b

)
(1 + o(1)),

Smax(t) = a(ln b)k−1(ln(t))−k(t)−
ln a
ln b �

(
ln a

ln b

)
(1 + o(1)),

and therefore, the estimate (A.2) holds. �

Appendix B

B.1. Proof of theorem 3 from section 3

To estimate the function f (t), we first estimate the coefficients bk of the series (3.16). These
coefficients coincide with the residues of the function F(s) at the poles s = −λk, k =
−1, 0, 1, 2, . . . (see (3.17), (3.18)):

b−1 = − 1

J (−Bα)
,

bk = − 1

(Bα − λk)
lim

s→−λk

s + λk

J (s)
= 1

(Bα − λk)

1

J ′(−λk)
= 1

(Bα − λk)
uk,

where

uk = (1 − p−1)−1

[ ∞∑
n=0

p−n

(λk − p−αn)2

]−1

. (B.1)

Recall (see section 3) that the poles s = −λk, k = 0, 1, 2, . . . , coincide with the simple roots of
the equation

∑∞
n=0 p−n 1

s+p−αn = 0 and the values λk lie on the interval p−α(k+1) < λk < p−αk .
The point s = 0 is a limit point for the set of poles. Let us examine the behaviour of the poles
λk and the residues uk for large k. We pass from λk to new variables δk , setting

λk = p−αk(p−α + (1 − p−α)δk) = p−α(k+1) + p−αk(1 − p−α)δk, 0 � δk � 1, (B.2)

and let

νk = (1 − p−1)uk ≡
[ ∞∑

n=0

p−n

(p−α(k+1) + p−αk(1 − p−α)δk − p−αn)2

]−1

. (B.3)

It can be shown that (B.3) implies the following inequalities for νk:

1

p(2α−1)k

[
1 − p(2α−1)

(p−α + (1 − p−α)δk)2(1 − p2α−1)
+

p

(1 − p−α)2δ2
k

+
p−2

(1 − p−α)2(p−α + (1 − p−α)δk)2(1 − p−1)

]−1

< νk <
1

p(2α−1)k
p(1 − p−α)2δ2

k . (B.4)

Since λk, k = 0, 1, . . . , are zeroes of the function
∑∞

n=0
p−n

s−p−αn , we have

∞∑
n=0

p−n

p−α(k+1) + p−αk(1 − p−α)δk − p−αn
= 0,

16



J. Phys. A: Math. Theor. 42 (2009) 085003 V A Avetisov et al

which implies the following estimate for δk:

1

ak

p + 1 + p2−αak

2p2−α

⎡
⎣1 −

(
1 − 4p2−αak(

p + 1 + p2−αak

)2

)1/2
⎤
⎦ < δk <

1

ak

1 − p−α−1

(p − 1)(1 − p−α)
,

(B.5)

where ak = k for α = 1 and ak = 1−p(1−α)(k+1)

1−p1−α for α �= 1. The quantities ak have the following
asymptotic behaviour for k → ∞:

ak = 1

1 − p1−α
+ o(1) for α > 1,

ak = p1−α

p1−α − 1
p(1−α)k(1 + o(1)) for α < 1,

ak = k for α = 1, where o(1) → 0 as k → ∞.

Using these relations and (B.4), (B.5), it is not difficult to obtain the estimates

D(α)(1 + o(1)) < δk < U(α)(1 + o(1)),

D̃(α)p(1−2α)k(1 + o(1)) < uk < Ũ(α)p(1−2α)k(1 + o(1)) for α > 1,
(B.6)

D(α)p(α−1)k(1 + o(1)) < δk < U(α)p(α−1)k(1 + o(1)),

D̃(α)p−k(1 + o(1)) < uk < Ũ(α)p−k(1 + o(1)) for α < 1,
(B.7)

D(α)k−1(1 + o(1)) < δk < U(α)k−1(1 + o(1)),

D̃(α)p−kk−2(1 + o(1)) < uk < Ũ(α)p−kk−2(1 + o(1)) for α = 1,
(B.8)

where D(α),U(α), D̃(α) and Ũ (α) are functions of α and p whose expressions are too lengthy
to be written out here.

Let f (t) be the probability density function (3.16) for the first passage times. Taking into
account the above notation, we can write

f (t) =
∞∑

k=−1

bk exp(−λkt) = − 1

J (−Bα)
exp(−Bαt)

+
1

Bα − p−α − (1 − p−α)δ0
uk exp[−(p−α + (1 − p−α)δ0)t] + g(t),

where we have set

g(t) ≡
∞∑

k=1

1

Bα − p−α(k+1) − p−αk(1 − p−α)δk

uk exp[−(p−α(k+1) + p−αk(1 − p−α)δk)t].

For g(t), we have the estimate

1

Bα

∞∑
k=1

uk exp[−p−αkt] < g(t) <
1

Bα − p−α

∞∑
k=1

uk exp[−p−αkp−αt].

Further, taking into account (B.6)–(B.8), we find that

D̃(α)

Bα

∞∑
k=1

p(1−2α)k(1 + o(1)) exp[−p−αkt] < g(t)

<
Ũ(α)

Bα − p−α

∞∑
k=1

p(1−2α)k(1 + o(1)) exp[−p−αkp−αt], α > 1, (B.9)
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D̃(α)

Bα

∞∑
k=1

p−k(1 + o(1)) exp[−p−αkt] < g(t)

<
Ũ(α)

Bα − p−α

∞∑
k=1

p−k(1 + o(1)) exp[−p−αkp−αt], α < 1, (B.10)

D̃(1)

B1

∞∑
k=1

p−k

k2
(1 + o(1)) exp[−p−kt] < g(t)

<
Ũ(1)

B1 − p−1

∞∑
k=1

p−k

k2
(1 + o(1)) exp[−p−kp−1t], α = 1. (B.11)

From (B.9)–(B.11), using the inequalities (A.4), (A.2), we obtain (3.19)–(3.21). The proof is
complete.
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